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Symbolic Equationsfor the Siffness and Strength of Sraight
L ongeron Trusses

Thomas W. Murphey
Air Force Research Laboratory, Kirtland AFB, New Mexico, 87117

Symbolic equations for the effective continuum stiffness and strength properties of
several periodic beam-like trusses have been previously derived and are well documented in
the literature. These equations are useful because they allow for rapid design and
assessment of structures that would otherwise require a more time-consuming analysis.
Previous investigations have consider ed changesin truss construction, such asthe number of
longerons and diagonal lacing as discrete cases; unique sets of equations were derived for
each unique construction. These equations did not restrict the relative sizes of longerons,
diagonals and battens. In the present work, a generic set of equations is derived that is
applicable to trusses with an arbitrary numbers of longerons and diagonal lacings, however,
the diagonals must be soft relative to the longerons and battens. The resulting equations are
useful in preliminary truss sizing and optimization routines because they allow the number
of longerons and diagonals to be changed by simply changing the value of a constant in the
equations. In this paper, equations are derived for effective continuum beam bending,
torsion, shear and axial loading. Within the assumption of relatively soft diagonals, the
equations are shown to be equivalent to the three, four and six longeron results previously
published by Renton and are numerically verified through comparison to finite element
analysis solutions.

Nomenclature

Symbols

element cross-section area(m
truss shear coefficient,

Young’s modulus (N/A),

shear modulus (N/i

cross-section moment of inertiajm
cross-section polar moment of inertiam
truss length (m),

element length (m),

bending moment (Nm),
number of longerons,

axial load (N),

truss radius (m),

torsion load (Nm),

truss or face shear load (N),
longeron distance from axis (m),
lateral deformation (m),

curvature (1/m),

truss diagonal angle (rad),

truss twist about its long axis (rad),
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= longeron angular position (rad),
= extensional strain,
= shear strain,

= truss twist per length (rad/m),
= number of diagonals per truss face, 1 or 2

ubscripts

= batten
= face center

= diagonal

= face

= longeron index number
= longeron

NS R OTV I 0

. Introduction

Preliminary design and analysis of beam-like trussesimplified by concise symbolic equations foeith
effective continuum behavior. Fortunately, thespiagions are readily attainable for contemporansdr
designs. Cost and the need for design simpligipictlly drive trusses to be periodic; they areltbup from
identical repeating cell constructioad infinitum. (A construction here defines a specific arrangement of structural
elements within a repeating cell, for example,ribenber of longeronsSzng refers to the cross-section and length
of each element.) The elastic behavior of periddisses can be predicted based on the elastiovibeta the
repeating cell. Repeating cells have simple caostns (a four longeron truss with two diagonads face has 16
elements per cell, only three of which are uniqueaking them conducive to closed form symbolic ¢igna
description. Beam-like trusses built up from a#in (end-to-end) stacking of these cells are sitpinalytically
simple when analyzed as an effective continuum.

Symbolic equations for several periodic truss aasiobns have been previously derived and will ddewed in
the first section of this paper. In these worksg, ¢quations were derived for a specific repeat@lbconstruction;
any change in this construction requires derivatibra new set of effective continuum equations. isTaper
expands on the previous work by deriving stiffnesd strength equations for trusses with an arlyitnamber of
straight longerons tied together with perpendicbiatten frames and an arbitrary diagonal lacingepat While
these equations do not assess global elastic istafitickling), they allow the truss elements to designed to
rationally derived tensile and compressive loadie simplified stiffness and strength equationssenéed here
accurately model trusses with three or more longeguch as coilable longeron masts and articulatasts) as
well as isogrids tubes with slender elements. @teations assume the elements are two force pieleadents
(they do not consider element bending) and areictsi to trusses where the diagonals are muclerstifan the
longerons.

1. Previous Effective Continuum Equation Derivations

Rentor® and Noof derived expressions for the effective continuuifingtss behavior of several trusses. In
terms of the truss radius (the radius of the ciatlevhich the longerons lieR ) and diagonal angle (angle from the
batten frame to the diagondl,), these equations for a three longeron truss twithdiagonals per face are,

i3
EA = 3E4, + 6EA,EA, sin 0;
EA, +2EA, cos” 6
.3
Bl — ERZ 254, + EAEA, sin 6?3
4 EA, +2FEA, cos” 6 (1)

| 3EA, tan§ (2EA,EA, cot’  + EA, cos® 0 (EA, + AEA, cot* 0))’
 6EAEA? cos® 0 + BA? cos’ (EA, + AEA cot’ )’ + 4BA,EA, cot® 0 (4BA,EA, cot’ 0 + EA, (EA, + EA, csc’ 0)

GJ = gEAdR2 cos” fsin 0

The equations for a three longeron truss with amyg diagonal per face and where these diagonalseed such
that they all spiral the same direction within § bad alternated directions between bays are,
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EA = 3EA,

Bl = gEA,RZ
oA —_ SEAEA, tand @)
4EA sec® 0 + EA, tan® 0
3EAEA,R* tan 0

- 4(EA, sec’ 0 + EA, tan’ 0)

The corresponding equations for a four longerosstmith two diagonals per face are,
EA = 4(EA, + 2EA, sin’ 0)

EAEA,sin’® 0
EA, + 2EA, cos® 0 3)
» AEA,(EABA, cot’ § + BA, cos’ 9 (EA, + 2E4, cot*0)) tan
" 2BAEA} cos® 0+ EA? cos® 0(EA, +2EA, cot’ 0) + EAEA cot’ 0 (2EA,EA, + AEA,EA, cot’ § + EA,EA csc’ )
GJ = 4EA,R’ cos® fsin 0
Infinitely stiff cross brace diagonals, locatedtlie plane of each batten frame, have been asswmgdtilize the

square batten frames from shear deformations. |l¥;itlae equations for a four longeron truss wittealiagonal per
face and laced such that the diagonals spiraldrsétme direction in every face are,

EI = 2R*| EA, +

FA = 4FA,
EI = 2EAR’
GA 4FAFA,EA, tan 0 @)

2B (BA, + EA, sec® 0) + EA,EA, tan® 0
B 2EAEA,EAR® tan 0

EAEA, sec’ 0 + EA, (EA, + EA, tan’ 0)

These equations are simplified by considering #hative axial stiffness of longerons, diagonals battens and
how they are loaded. Trusses are typically siaezh ghat the longeron axial stiffness is much gnethhan the
diagonal and sometimes the batten stiffness. Witks axial and bending loading, the longerons imechighly
loaded while the battens and diagonals, due to gegrand their lower stiffness, are only minimallyessed. As a
result, longeron compliance typically dominat&sl and EI . In torsion and shear loading configurations, the
diagonals become highly stressed while longerorts zattens are somewhat less stressed. The diagaral
typically much more compliant than the longerondhsd GA and GJ are dominated by the diagonal compliance.
Formally, these assumptions are 1) that eithediagonal or batten stiffness approach zerofgr and EI and 2)
that both the longeron and the batten stiffnessagmh infinity for GA and GJ ,

EA

EI
GA
GJ

Implementing these limits in Equation (1), a thiesgeron truss with two diagonals per face, yields,
EA = 3EA,

GJ

}EAd —0orFEA4 —0
(5)
} EA, — coand EA, — oo

EI = gEA,RZ

6
GA = 3EA, cos® 0sin 6 ©)

GJ = %EAJR2 cos” fsin 0
A similar procedure can be followed for the otheiss constructions. The simplified equations foeé longeron
trusses with one diagonal per face are identickigations (6) except thatA and GJ are multiplied by %4,
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EA = 3EA,

EI = gEAIR2
7
GA = gEAd cos” 0sin 0 7)
GJ = %EA(IR2 cos’ Osin 0
The four longeron truss construction with two diagls per face yields the following simplified eqoas,
FEA = 4FA,
EI = 2EAR’
(8)

GA = 4EA, cos® Osin

GJ = 4FA,R’? cos’ Osin 0

Four longeron trusses with only one diagonal pee fare similarly identical to Equations (8) exctyatt GA and
GJ should be multiplied by ¥,

FA = 4FA,
EI = 2EAR’
GA = 2EA, cos’ §sind

GJ = 2EA,R* cos’ fsin 0

Finally, Renton also derived the equations for Isixgeron trusses. After simplification, the eqoa$ for two
diagonals per face are,

(9)

EA = 6EA,
EI = 3EAR? (10)

GJ = 9EA,R’ cos’ 0sind
Renton did not derive the equations 1@l for six longeron trusses in Reference 1. The Efia@ equations for
six longeron trusses with one diagonal per facedmmstical to Equations (10) except th@f is multiplied by %2,
EA =6FE4,

EI = 3EAR’ (11)

GJ = %E’AdR2 cos’ fsin 0

[11.  Current Derivations: Stiffness

In the current derivations, simplified truss eqomlsi similar to Equations (6) through (11), are $wuas a
function of the number of longerons J and the number of diagonals per fage €ither 1 or 2). Consider the truss

construction to be of. evenly spaced straight longerons, all of whiclolea circle of radius?. Perpendicular to
the longerons are planar batten frames where esttdnhis of length,

I, = 2Rsin [ﬁ] (12)
The batten frames are evenly distributed alondahgerons artlan interval (bay length) of,
[, = 2Rsin {% tan 0 (13)
The resulting diagonal lengths are,
(- 2l

The relations between longeron, diagonal and bédtegth are also useful,
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l, =1 tan0
[, =1sin0 (15)
l, =1, cosf
Truss axial stiffness is the simplest case amtiisidered first. Because primarily the longerargsloaded, it is
reasonably intuitive to assume that the axialrst$t of a truss is the sum of the axial stiffnesfedl the longerons,
EA = nFEA, (16)
Derivation of the truss bending stiffness result@isimilarly simple expression. Assume the fiosigeron is
located at an angle af, from thez axis. Subsequent longerons are located at,

2,
Z/Jf, = % +7(l_1) (17)
1, results in unique solutions fromp, =0 to ¥, = mn; values outside this range result in redundangéoon

positions. Assume the truss bends about the ¢ressetric center so that the distance fromsthaxis to a specific
longeron is,

z, = Rcos), (18)
The bending stiffness of the truss is the sum efctintribution from each longeron,
EI =% EAx} = EAR®)  cos’ [¢1 + 2_7T(i - 1)] = gEAlR2 (19)
i=1 i=1 n

1, is not explicit in the final expression showin@thE! is isotropic; truss bending stiffness is the samevery

direction. Equation (19) was previously deriveRieference 5.
The torsional and shear stiffness equations areeteby considering the shear stiffness of onestifase, as
shown in Figure 1.

1% ‘
R e nE—AdCSC [E] cos” 0 (20)
o, 2R n
The shear stiffness of a truss is related to #His &tiffness by,
Vv
GA =c—L (21)
6, /l,

where ¢ is a coefficient to correct for the number facesl dhe orientation of each face within a bay. The
coefficient includes two cosine reduction factoysb&cause each face is not oriented parallel tshiear direction
and 2) because each face deformation directioatiparallel to the face. The resulting coefficient

c= Zc052 Y, = g (22)
i=1
The truss shear stiffness is then,
GA = n%EAd cos? Osin 0 (23)
As with bending stiffness, the shear stiffness@ropic.

The truss torsional stiffness is times the torsional stiffness provided by a sirfglee,

GJ = ;7 (24)

where T} is the moment contribution from a single face itnuss twisted by an angle of. The line of action of

the moment occurs at the center of the face, wisictoser to the truss rotational centerhy;(W/n). T, and ¢
are thus expressed as,
T, =V,Rcos [%] (25)
0
¢=—"— (26)
Rcos —)
n

Substitution of Equations (20), (25) and (26) iBmuation (24) gives the truss torsional stiffness,
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GJ = mEA,R’ cos’ [E] cos’ fsin @ (27)

n
The current truss derivations are summarized inelTab By inspection, it is apparent they are idehtto the
simplified forms of Renton’s derivations from Egieais (6) through (11).

IV. Current Derivations. Element Loads

Element loads are calculated in a systematic gotieat takes advantage of the truss stiffnesdtsesiithe
previous section. First, the truss stiffness dquatare used to calculate the element strainrésaits from a truss
load. Second, element loads that result fromatren are calculated. Within the assumptionsauidion (5), it is
not necessary to account for elasticity in caléntptelement loads; however, the employed procdssvalthe
assumptions of soft diagonals and stiff longeranise more rigorously tracked than otherwise coremni

Truss axial, bending, shear and torsional stiffsgesdefined as,

EA:B, EI:%,GA:K,GJ:Z (28)
€ K 5y 0,
P is a truss axial load and is the resulting axial change in length per lengthruss. M is a truss bending
moment andx is the change in truss angle per length of trumb ia equivalent to the truss curvatur&. is a
uniform truss shear load and is the resulting shear deflection per truss lendthis a truss torsion load andl is
the truss twist per length. It is difficult to dotly measure the shear stiffness of a truss becslusar loads are
coupled to moments and the resulting deflectiorsd@pendent o’/ as well asGA . Fortunately,EI is readily
isolated through application of pure moments softhvaa cantilever beanGA is?
v |
3EI]

Assuming the truss elements are pinned at both mdisat they only carry axial loads, the loada longeron,

diagonal and batten as a function of their straén a
b =¢gEA, b, =¢EA;, B, =¢kFA, (30)

The strength of a truss with axial loading is the@est case and is considered first. Assumindahgerons are
much stiffer than the diagonals, a truss axial loaly significantly loads the longerons. When agtinal load does
result, it is typically much smaller than that ded from a shear or torsion load. The longeroairstthat results
from a truss axial strain is identical to the tras#al strain,s, = ¢. Combining this and Equations (16), (28) and

(30), the ratio of element to truss load is,

GA = VL[& - (29)

- == (31)

A truss loaded in bending similarly only loads tlb@gerons when the longerons are much stiffer ten
diagonals. Combining Equations (19) and (28) tthses bending moment to curvature ratio is,

M _npap (32)
K 2
Assuming the truss bends about its geometric cetntess curvature as a function of longeron stigin
K= ! (33)
Rcos0,

where 6, is the position of the first longeron. Combiniggjuations (30), (32) and (33), the longeron load to

bending moment ratio is,
B 2cosb, (34)
M nR

Truss bending strength is minimum when the longevith the largest compressive load= 1) is farthest from the
neutral axis; i.e. whefl, =0,

lmax 2

M R
The truss bending strength is maximum when thedomgwith the largest compressive load is closethé neutral
axis; i.e. wherg, = mn,

(35)
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P
[, min _ i cos [z] (36)
M nR

The maximum and minimum bending strengths differabyactor of COS(W/H), which is 1/2 for n =3 and

approachesg as the number of longerons increases.
A truss loaded in torsion results in a constart aniform shear deformation in each truss face.mkining
Equations (27) and (28), the truss twist per lenigéh results from a torsional load is,

% = nnEA,R* cos® [z cos” fsin 6 (37)
n
Diagonal length change as a function of truss &emar displacement is given by,
6, = 6, cost (38)
Combining Equation (26) with Equations (15) and)(3Be truss twist per length as a function of dizag strain is,
9=2_ TR (39)
L' RcosOsinfcos—
n
wheree, = 61,/1(1 . Combining Equations(30), (37), and (39) yields tatio of diagonal load to truss load,
L _ ;ﬁ (40)
T pnRcosfcos—
n

A truss loaded in shear results in a face shedrdamgonal load that depends on the orientatiothefface
relative to the shear load. Combing Equations &2®) (28), the truss shear deflection per length sults from a
shear load is,

v = nﬁEAd cos’ fsin @ (42)
ol 2
Diagonal length change as a function of truss skeaends on the orientation of the truss face. thetangle
between the direction of the shear load and theepdd a shear face be given by,
" S (42)
2 n
With this convention, the maximum face shear defdiom and hence, diagonal load, occurs whien= —m/n SO

that ), = 0. The face shear relative to the shear direcgpn i
0

b, = 43
T cos P, (“43)
Combining Equations (15), (38) and (43), the talssar deformation per length is,
y=le G (44)
[,  cost, cosfsind
Combining Equations (30), (41) and (44) yields o of diagonal load to truss shear load,
b _ 2cos 1, (45)
V. mncosé

The truss shear strength is minimum when the ffass is oriented so that is receives the maximueassktrain,
when, =0,
P

d,max _ 2 (46)
14 nn cosf

The truss shear strength is maximum when the fasis oriented so that it receives the minimumaststrain,
wheny, = Wi

7T
P 2cos—
d,min n
—EE = 47)
v nmncosf
In trusses with two diagonals per face, loads areelled such that shear and torsion loads dondoice loads
in the batten and diagonals. This cancelling ¢ffiees not occur in trusses with a single diagpeafface and shear
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and torsion loads induce diagonal and batten loddwese loads are a result of static equilibriunthef joints and
are thus simple to calculate. A diagonal load wéllise longeron and batten loads of,

il =sinf
B,
» (48)
L = cosf
F,
Using these equations, the longeron and batters lthead result from a torsion load are,
PP B _ tanf
T TP pRcos™
n
49
B_RE__ “
T T F nR cos -
n
Similarly, the loads that result from a shear laag,
P P o
I, max _ d,max ﬂ _ ztan@
Vv V P n
b,max _ Riﬁmax ﬂ _ 2
Vv vV P n
P Pd ) (50)
[,min _ d,min e 2 cos—tan 0
14 VBB n =n
B).min ’Pd.min Pb 2
= — = —Cos—
14 V P n n

V. Comparison with Finite Element Solutions

The truss stiffness and strength equations deiiivetlis paper were shown to be accurate throughpeoison
with finite element analysis solutions generatethwibaqus (ABAQUS, Inc.), a general purpose firetement
analysis program. Abaqus Python scripts were avwritd build and solve models of trusses with aitrary number
of longerons, bays and diagonal lacing. Thesetisolsiwere then interrogated for effective stiffees and element
loads. Representative models are shown in Figurdi2ree reference trusses were considered antistzd in
Table 2. Four relative arrangements of elemeritd atiffnesses were also considered and are list@able 3.

Finite element analysis and simplified symbolic &ipn stiffness results are compared in Table 4cioe
diagonal per face and in Table 5 for two diagomasface. For one diagonal per face the equatoasxact for
EA and EI , regardless of the truss configuration. The d@qoatfor GA and GJ are accurate within 0.76% for
truss configuration C4 (diagonals are 100 timesenommpliant than longerons and battens) and angraecwithin
7.57% for truss configuration C2 (diagonals aretib®es more compliant than longerons and battenhe
equations are in error by as much as 75.7% fostoomfiguration C1, where all elements have theesamss
section. For trusses with two diagonals per facéy the equation folGJ is exact for all truss configurations. For
truss configuration C4, the equations are accumatsithin 1.16%. For truss configuration C2, thguations are
accurate to within 10.3%. For truss configurat@@h the equations are in error by as much as 55.4%.

Finite element analysis and simplified symbolic &ipn strength results are compared in Table 6ofue
diagonal per face in all truss configurations, iable 7 for configuration C1 with two diagonals gace and in
Table 8 for configuration C4 with two diagonals fi@ece. The equations are precise for one diagueraface in all
configurations. This is because trusses with dagahal per face are statically determinant andcbgtihe element
loads are not a function of the truss elasticiSome error occurs in the equations for two diagopak face. In
truss configuration C4, the load equations are r@teuo within 1.18%. In configuration C1, the atjons are in
error by as much as 89.2%.

The equations in Table 1 were also published inp@hal of Reference 7, however, the details ofrtheurce
and derivation were not discussed.
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V1. Concluson

The conclusions of this work are rather mundaneesito additional insight into the behavior of tesfas been
revealed. The utility in the work is in having ancise reference to find simple equations to qyieklaluate the
stiffness and element loads for a large classuskgs.

However, one can glean insights from the resufisr example, the equations rigorously elucidatestteding of
truss stiffness and strength with number of longerdruss axial, bending and shear stiffness dowarly with the
number of longerons. Truss torsional stiffnessescaith,

n cos’ [E] (52)
n
Presumably the cosine term occurs because as tmbemuof longerons is increased, the truss moreeblos
approximates a tube by placing the diagonals agthatest effective radius. Maximum element losidgply scale
with the inverse of the number of longerons. Minimelement loads scale similarly, with the add#ioh a cosine
term,

n
that accounts for the placement of elements reativthe axis of bending. As would be expectedhigher
numbers of longerons there is little differencenmstn the maximum and minimum element loads.

The equations also illustrate the interesting flaat shear stiffness and strength are not a fumctidruss radius.
While increasing the truss radius will dramaticaligrease bending and torsional strength and es&nit does not
change the truss shear properties. This impliasalstout truss loaded in shear does not bemefit its increased
structural depth.

cos [E] (52)
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Table 1: Truss stiffness and strength equations assuming longer ons are much stiffer than diagonals.

5S

Stiffness Load Ratiowith 1 L oad Ratio with 2
Diagonal Per TrussFace | Diagonals Per Truss Face
hL_1
P n
Axial EA = nEA, b, —~0 Same as 1 diagonal per trus
P face
£,
P
Bl 2
M nR’
Pl‘mm
n Mo ECOS [;] Same as 1 diagonal per trug
Bending EI = —EAR’ g p S
2 P face
i —
P
L _y
P
Bm’\x
— = —tand,
v n
lein
—— = —cos—tanf
V n n
R]A,max — 2 ‘Pd.ma_x _ 1
v n cos -
Shear GA = ngEAd cos® fsin 0 5 4 ncosd
Pdmin _ cos n ﬂ — 0
V ncos 14
lenax _ z
V n’
PILmin
e COS—
V n n
ﬂ _ tanf
T nRcos™ il =0
n T
2 2| T 2 i L i = 1
Torsion GJ = mEA,R” cos [;] cos” fsin 6 T nRcos™cosd T 9mRcos” cosd
n n
B__ 1 _ A _g
T pRcos— T
n
Table 2: Reference truss configurations.
3Longeron 4 Longeron | 7Longeron
Truss Truss Truss
Number of Longerons, n 3 4 7
Radius, R (m) 0.525 0.471 0.551
Diagonal Angle, 6 (deg) 28.0 57.0 34.0
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Table 3: Referencetruss element properties.

CL C2: Soft C3: Soft Diagonals | C4: Very Soft
All Equal Diagonals and Battens Diagonals

Longeron Axial Stiffness,

EA (x 10°N) 15.0 15.0 15.0 15.0
Diagonal Axial Stiffness, 15.0 150 150 0.15

EA, (x 10°N) : : : :

Batten Axial Stiffness,
EA, (x 10°N) 15.0 15.0 1.50 15.0

Table 4: Finite element analysis and simplified symbolic equation stiffness comparisons for one diagonal per
trussface.

FA (x 10°N) EI (x 10° N-m? GA (x 10°N) GJ (x 10°N-m?)

FEA | Sym | % Dif | FEA | Sym | % Dif | FEA | Sym | % Dif | FEA | Sym | % Dif

C1| 45.00 | 45.00 0 6.204 6.20p 0 4979 8235 634 0645835 757
3 _C2[ 4500 45.00 0 6.204 6.20p o 07780 0.8235 6Jp4 56.1®.1135] 7.57
c3| 45.00| 45.00 0 6.204 6.20p 0o 04979 08235 654 10.681.135| 66.4

ca| 45.00| 45.00 0 6.204 6.20p o[ o0.0818 0.0823 0|5 18.0D.0113] 0.76

Cc1] 60.00 | 60.00 0 6.655 6.65b 0 5528 7.463 33.0 0.949%56| 74.3

. — 4 _C2| 60.00] 60.00 0 6.655 6.65b o 07211 07463 3J50 40.1®.1656] 7.43
c3| 60.00| 60.00 0 6.655 6.65b 0 06362 07463 17.3 66.1®.1656] 21.2

C4| 60.00 | 60.00 0 6.655 6.65b 0| 0.0746207463 0.35 | 0.016480.01656 0.74

Cc1| 105.0] 105.0 0 1594 15.94 0 12.07 2018 6].2 57%945] 71.6
7 C2| 1050] 105.0 0 1594 15.94 0 1891 2008 6J[2 0.92B9945| 7.16
c3| 105.0| 105.0 0 1594 15.94 0 1298 20178 5%4 0.6389945] 55.9

c4| 105.0| 105.0 0 1594 15.94 0| 0.2004 0.2018 0|67 8089.09945 0.72

Table 5: Finite element analysis and simplified symbolic equation stiffness comparisons for two diagonals per
trussface.

FA (x 10°N) FEI (x 10° N-m? GA (x 10°N) GJ (x 10°N-m?)
FEA | Sym | % Dif | FEA | Sym | % Dif | FEA | Sym | % Dif | FEA | Sym | % Dif
C1| 49.08| 45.00] -832] 6.342 6.202 -2.42 18p4 16[47 694 2.270] 2.270 0
n=3 C2| 4582 | 4500 -1.80] 6230 6202 -046 1666 1.647 53-0.0.2270[ 0.2270] 0
ca| 45.09| 45.00] -0.20] 6.205 6.202 -0.05 0.1648 0.1640.05-| 0.022700.02270 0
C1| 11421 60.00] -475 9.662 6.655 -31|]1 3349 14[93 4953311] 3.311 0
n=4 C2| 66.87| 60.00] -10.3] 7.03¢ 6655 -54 15p3 1493 819.3311[0.3311] 0
c4| 60.71| 60.00] -1.16] 6.694 6.655 -0.48 0.1496 0.1498.20-| 0.0331] 0.0331] 0
Cc1| 122.8] 105.0] -145 1818 1594 -12]1 43b7 40[36 22-d 19.89] 19.89 0
n=7 Cc2| 1083] 1050 -31| 1633 1594 -2H0 4.045 4.036 4-021.989] 1.989 0
C4| 1054 105.0] -0.34] 1598 1594 -0.48 0.4036 0.4036.02-| 0.1989 0.1989] 0
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Table 6: Finite element analysis and simplified symbolic equation strength comparisons for one diagonal per

trussface (element loads areidentical for C1, C2, C3 and C4 truss configurations).

3 Longeron Truss

4 Longeron Truss

7 Longeron Truss

FEA | Sym | % Dif | FEA | sym | % Dif | FEA | Sym | % Dif
_ P |3333] 3333 o0 250.0 | 250.0 0 142.9  142.9 0
;\ialll(}ggd;\, k] o 0 0 0 0 0 0 0 0
) 0 0 0 0 0 0 0 0 0
Bending w | 6349|6349/ 0 750.6 | 7506 | O 4672 | 4672 | 0
Moment | 1270.]1270.| © 1062. | 1062. | © 5185 | 5185 | O
M 51000 P, 0 0 0 0 0 0 0 0 0
-m
P, 0 0 0 0 0 0 0 0 0
B [ 1772 1772] 0 544.4 | 5444 | 0 1736 | 1736 | 0
p,. | 3545|3545 0 769.9 | 7699 | 0 1927 | 1927 | 0
Shear Load, Fimn | 3775|3775 649.2 | 6492 | 0 3105 | 3105| 0
V =1000 N P, | 7550|7550 9180 | 9180 | O 3446 | 3446 | O
B | 333.3]3333] 0 3536 | 3536 | O 257.4 | 2574 | 0
P, | 666.7]666.7| 0 500.0 | 5000 | O 2857 | 2857 0
Torsional P |675.2] 67520 0 1156. | 1156. 0 194.1 194.1 0
;%0 P |1438.] 1a38] o | 1s78.| 1378| 0 | sard 347l 0
N-m P, | 1270.] 1270] o 750.6 | 750.6 0 287.4 287.8 0

Table 7: Finite element analysis and simplified symbolic equation strength comparisonsfor two diagonals per

trussface, C1.

3Longeron Truss

4 Longeron Truss

7 Longeron Truss

FEA | Sym | % Dif | FEA | Sym | %Dif | FEA | Sym | % Dif
, P, [3066] 3339 87 | 1322] 2500] s89.2[ 1228 142l0 16
peeoad Tp e84 | o - | 7026] 0 - | 1794 0 :
| 502 o R - | 2075 o :
Bending L/ | 621.4|634.9| 218 | 519.2 | 7506 | 44.6 | 4125 | 467.2 | 133
Moment P | 1243|1270 218 | 735.7 | 1062 | 44.3 | 457.8 | 5185 | 13.3
M oo B | 288] o - | 1e52] o - | s43] o -
F, | 509 ] o - | 2126] 0 - | o005 o :
Shear Load, Fims | 3775 3778 0 | 4500 4500 o [ 1724 1728 o0
V=1000NP7 1T 0 [ o | o 0 0 0 0 0
Torsional P 0 0 0 0 0 0 0 0
;% B | 7191|7194 o | esei| esei| o | 1734 1735 0
N-m b, 0 0 0 0 0 0 0 0 0
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Table 8: Finite element analysis and simplified symbolic equation strength comparisonsfor two diagonals per
trussface, C4.

3 Longeron Truss 4 Longeron Truss 7 Longeron Truss
FEA | Sym | % Dif | FEA Sym | % Dif | FEA Sym | % Dif
B 332.7| 333.3 0.20 247.1| 250.0 1.18 142.4  142)9 0.35
P, 07232 0 - 1.732 0 - 0.440% 0 -

P | 1.277 0 - 1.887 0 - 0.7298 0 -

Axial Load,
P =1000 N

Bending . | 634.6/634.9| 0.05 | 7463 | 7506 | 0.59 | 465.88| 467.2 | 0.28
Moment, Pl | 1269 | 1270 0.05 | 1055 | 1062 | 059 | 517.1 | 5185 | 0.28

l,max

Milooo P, 10.6898 0 - 3.700 0 - 1.298 0 -
-m
B |1218| o0 - 4.030 0 - 2.152 0 -
Shear Load, Dime | 377.5| 3775 0 459.0 | 459.0 0 1723 17238 0
V=1000 N P, 1020 o - 5.846| 0 - | os022 0 -
Torsional P 0 0 0 0 0 0 0 0 0
TL:OTSbo P, |7191| 7201 o | e89.1| 6891] o | 1734 1736 0
N-m B, 0 0 0 0 0 0 0 0 0
L I ‘|<5
’\ rigid /‘
>V
=
U=
=~
rigid
< 1%
Ry Ry

Figure 1. Onetrussface and associated diagonals, loads and deflections.
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n=3 n=4 = n==6 n="17
Figure2: Trussfinite element modelsfor 3, 4, 5, 6 and 7 longer on trusses with two diagonals per trussface.
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